Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast

نویسندگان

  • Kiersten A Henderson
  • Adam L Hughes
  • Daniel E Gottschling
چکیده

Replicative aging in yeast is asymmetric-mother cells age but their daughter cells are rejuvenated. Here we identify an asymmetry in pH between mother and daughter cells that underlies aging and rejuvenation. Cytosolic pH increases in aging mother cells, but is more acidic in daughter cells. This is due to the asymmetric distribution of the major regulator of cytosolic pH, the plasma membrane proton ATPase (Pma1). Pma1 accumulates in aging mother cells, but is largely absent from nascent daughter cells. We previously found that acidity of the vacuole declines in aging mother cells and limits lifespan, but that daughter cell vacuoles re-acidify. We find that Pma1 activity antagonizes mother cell vacuole acidity by reducing cytosolic protons. However, the inherent asymmetry of Pma1 increases cytosolic proton availability in daughter cells and facilitates vacuole re-acidification and rejuvenation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aging: Filtering Out Bad Mitochondria

During yeast cytokinesis an aged mother cell gives rise to an immaculate daughter cell. A new study now demonstrates that this rejuvenation encompasses a novel Sir2- and actin-cable-dependent filtering process that prevents feeble mitochondria from entering the daughter cell.

متن کامل

A mother's sacrifice: what is she keeping for herself?

Individual cells of the budding yeast, Saccharomyces cerevisiae, have a limited life span and undergo a form of senescence termed replicative aging. Replicative life span is defined as the number of daughter cells produced by a yeast mother cell before she ceases dividing. Replicative aging is asymmetric: a mother cell ages but the age of her daughter cells is 'reset' to zero. Thus, one or more...

متن کامل

Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry.

Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a f...

متن کامل

A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae.

The yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, or budding. In each cell division, the daughter cell is usually smaller and younger than the mother cell, as defined by the number of divisions it can potentially complete before it dies. Although individual yeast cells have a limited life span, this age asymmetry between mother and daughter ensures that the yeast strain...

متن کامل

Yeast replicative life span--the mitochondrial connection.

Mitochondria have been associated with aging in many experimental systems through the damaging action of reactive oxygen species. There is more, however, to the connection between mitochondria and Saccharomyces cerevisiae longevity and aging. Induction of the retrograde response, a pathway signaling mitochondrial dysfunction, results in the extension of life span and postponement of the manifes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014